Nonmonotonic Energy Dissipation in Microfluidic Resonators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonmonotonic energy dissipation in microfluidic resonators.

Nanomechanical resonators enable a range of precision measurements in air or vacuum, but strong viscous damping makes applications in liquid challenging. Recent experiments have shown that fluid damping is greatly reduced in fluidic embedded-channel microcantilevers. Here we report the discovery of nonmonotonic energy dissipation due to the fluid in such devices, which leads to the intriguing p...

متن کامل

Energy dissipation in microfluidic beam resonators

JOHN E. SADER†, THOMAS P. BURG AND SCOTT R. MANALIS Department of Mathematics and Statistics, The University of Melbourne, Victoria 3010, Australia Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany Department of Mechanical Engineering, Massachusetts Institute of Technolo...

متن کامل

Energy dissipation in microfluidic beam resonators: Dependence on mode number.

Energy dissipation experienced by vibrating microcantilever beams immersed in fluid is strongly dependent on the mode of vibration, with quality factors typically increasing with mode number. Recently, we examined energy dissipation in a new class of cantilever device that embeds a microfluidic channel in its interior-the fundamental mode of vibration only was considered. Due to its importance ...

متن کامل

Energy dissipation in microfluidic beam resonators: effect of Poisson's ratio.

Dissipation of mechanical energy underlies the sensitivity of many nanomechanical devices, with environmental effects often having a significant effect. One case of practical relevance is the interaction of elastic beam resonators with fluid, which is known to dramatically increase energy dissipation. Recently, we investigated energy dissipation in a different class of elastic beam resonator th...

متن کامل

Energy-dependent path of dissipation in nanomechanical resonators.

Energy decay plays a central role in a wide range of phenomena, such as optical emission, nuclear fission, and dissipation in quantum systems. Energy decay is usually described as a system leaking energy irreversibly into an environmental bath. Here, we report on energy decay measurements in nanomechanical systems based on multilayer graphene that cannot be explained by the paradigm of a system...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review Letters

سال: 2009

ISSN: 0031-9007,1079-7114

DOI: 10.1103/physrevlett.102.228103